Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
CMAJ Open ; 10(3): E599-E609, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1924664

RESUMEN

BACKGROUND: Early in the COVID-19 pandemic, the South Asian community in the Greater Toronto Area (GTA) was identified as having risk factors for exposure and specific barriers to accessing testing and reliable health information, rendering them particularly vulnerable to SARS-CoV-2 infection. We sought to investigate the burden of SARS-CoV-2 infection among South Asian people in the GTA, and to characterize the demographic characteristics, risk perceptions and trusted sources of health information in this group. METHODS: We conducted a cross-sectional analysis from the baseline assessment of participants in a prospective cohort study. Participants from the GTA were enrolled from Apr. 14 to July 28, 2021. Seropositivity for antispike and antinucleocapsid antibodies was determined from dried blood spots, and estimates of seropositivity were age and sex standardized to the South Asian population in Ontario. Demographic characteristics, risk perceptions and sources of COVID-19 information were collected via questionnaire and reported descriptively. RESULTS: Among the 916 South Asian participants enrolled (mean age 41 yr), the age- and sex-standardized seropositivity was 23.6% (95% confidence interval 20.8%-26.4%). Of the 693 respondents to the questionnaire, 228 (32.9%) identified as essential workers, and 125 (19.1%) reported living in a multigenerational household. A total of 288 (49.4%) perceived that they were at high COVID-19 risk owing to their geographic location, and 149 (34.3%) owing to their type of employment. The top 3 most trusted sources of information related to COVID-19 included health care providers and public health, traditional media sources and social media. INTERPRETATION: By the third wave of the COVID-19 pandemic, about one-quarter of a sample of South Asian individuals in Ontario had serologic evidence of prior SARS-CoV-2 infection. Insight into factors that put certain populations at risk can help future pandemic planning and disease control efforts.


Asunto(s)
COVID-19 , Adulto , COVID-19/epidemiología , Estudios Transversales , Humanos , Ontario/epidemiología , Pandemias , Estudios Prospectivos , Factores de Riesgo , SARS-CoV-2
2.
Pediatr Infect Dis J ; 41(8): e318-e320, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1840095

RESUMEN

This substudy of a prospective case-ascertained household transmission study investigated severe acute respiratory syndrome coronavirus 2 reverse transcription polymerase chain reaction-positive individuals without antibody development and factors associated with nonseroconversion. Approximately 1 of 8 individuals with coronavirus disease 2019 did not seroconvert. Children, particularly the youngest, were approximately half as likely to seroconvert compared with adults. Apart from the absence of fever/chills, individual symptoms did not strongly predict nonseroconversion.


Asunto(s)
COVID-19 , Adulto , Anticuerpos , COVID-19/diagnóstico , Niño , Humanos , Estudios Prospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética
3.
CMAJ Open ; 10(2): E357-E366, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1789665

RESUMEN

BACKGROUND: Household transmission contributes to SARS-CoV-2 spread, but the role of children in transmission is unclear. We conducted a study that included symptomatic and asymptomatic children and adults exposed to SARS-CoV-2 in their households with the objective of determining how SARS-CoV-2 is transmitted within households. METHODS: In this case-ascertained antibody-surveillance study, we enrolled households in Ottawa, Ontario, in which at least 1 household member had tested positive for SARS-CoV-2 on reverse transcription polymerase chain reaction testing. The enrolment period was September 2020 to March 2021. Potentially eligible participants were identified if they had tested positive for SARS-CoV-2 at an academic emergency department or affiliated testing centre; people who learned about the study through the media could also self-identify for participation. At least 2 participants were required for a household to be eligible for study participation, and at least 1 enrolled participant per household had to be a child (age < 18 yr). Enzyme-linked immunosorbent assays were used to evaluate SARS-CoV-2-specific IgA, IgM and IgG against the spike-trimer and nucleocapsid protein. The primary outcome was household secondary attack rate, defined as the proportion of household contacts positive for SARS-CoV-2 antibody among the total number of household contacts participating in the study. We performed descriptive statistics at both the individual and household levels. To estimate and compare outcomes between patient subgroups, and to examine predictors of household transmission, we fitted a series of multivariable logistic regression with robust standard errors to account for clustering of individuals within households. RESULTS: We enrolled 695 participants from 180 households: 180 index participants (74 children, 106 adults) and 515 of their household contacts (266 children, 249 adults). A total of 487 household contacts (94.6%) (246 children, 241 adults) had SARS-CoV-2 antibody testing, of whom 239 had a positive result (secondary attack rate 49.1%, 95% confidence interval [CI] 42.9%-55.3%). Eighty-eight (36.8%, 95% CI 29.3%-43.2%) of the 239 were asymptomatic; asymptomatic rates were similar for children (51/130 [39.2%, 95% CI 30.7%-48.5%]) and adults (37/115 [32.2%, 95% CI 24.2%-41.4%]) (odds ratio [OR] 1.3, 95% CI 0.8-2.1). Adults were more likely than children to transmit SARS-CoV-2 (OR 2.2, 95% CI 1.3-3.6). The odds of transmission from asymptomatic (OR 0.6, 95% CI 0.2-1.4) versus symptomatic (OR 0.9, 95% CI 0.6-1.4) index participants to household contacts was uncertain. Predictors of household transmission included household density (number of people per bedroom), relationship to index participant and number of cases in the household. INTERPRETATION: The rate of SARS-CoV-2 transmission within households was nearly 50% during the study period, and children were an important source of spread. The findings suggest that children are an important driver of the COVID-19 pandemic; this should inform public health policy.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Antivirales , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Composición Familiar , Humanos , Incidencia , Pandemias , SARS-CoV-2/genética
4.
Lancet Healthy Longev ; 3(3): e166-e175, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1758022

RESUMEN

BACKGROUND: The use of COVID-19 vaccines has been prioritised to protect the most vulnerable-notably, older people. Because of fluctuations in vaccine availability, strategies such as delayed second dose and heterologous prime-boost have been used. However, the effectiveness of these strategies in frail, older people are unknown. We aimed to assess the antigenicity of mRNA-based COVID-19 vaccines in frail, older people in a real-world setting, with a rationed interval dosing of 16 weeks between the prime and boost doses. METHODS: This prospective observational cohort study was done across 12 long-term care facilities of the Montréal Centre-Sud - Integrated University Health and Social Services Centre in Montréal, Québec, Canada. Under a rationing strategy mandated by the provincial government, adults aged 65 years and older residing in long-term care facilities in Québec, Canada, with or without previously documented SARS-CoV-2 infection, were administered homologous or heterologous mRNA vaccines, with an extended 16-week interval between doses. All older residents in participating long-term care facilities who received two vaccine doses were eligible for inclusion in this study. Participants were enrolled from Dec 31, 2020, to Feb 16, 2021, and data were collected up to June 9, 2021. Clinical data and blood samples were serially collected from participants at the following timepoints: at baseline, before the first dose; 4 weeks after the first dose; 6-10 weeks after the first dose; 16 weeks after the first dose, up to 2 days before administration of the second dose; and 4 weeks after the second dose. Sera were tested for SARS-CoV-2-specific IgG antibodies (to the trimeric spike protein, the receptor-binding domain [RBD] of the spike protein, and the nucleocapsid protein) by automated chemiluminescent ELISA. Two cohorts were used in this study: a discovery cohort, for which blood samples were collected before administration of the first vaccine dose and longitudinally thereafter; and a confirmatory cohort, for which blood samples were only collected from 4 weeks after the prime dose. Analyses were done in the discovery cohort, with validation in the confirmatory cohort, when applicable. FINDINGS: The total study sample consisted of 185 participants. 65 participants received two doses of mRNA-1273 (Spikevax; Moderna), 36 received two doses of BNT162b2 (Comirnaty; Pfizer-BioNTech), and 84 received mRNA-1273 followed by BNT162b2. In the discovery cohort, after a significant increase in anti-RBD and anti-spike IgG concentrations 4 weeks after the prime dose (from 4·86 log binding antibody units [BAU]/mL to 8·53 log BAU/mL for anti-RBD IgG and from 5·21 log BAU/mL to 8·05 log BAU/mL for anti-spike IgG), there was a significant decline in anti-RBD and anti-spike IgG concentrations until the boost dose (7·10 log BAU/mL for anti-RBD IgG and 7·60 log BAU/mL for anti-spike IgG), followed by an increase 4 weeks later for both vaccines (9·58 log BAU/mL for anti-RBD IgG and 9·23 log BAU/mL for anti-spike IgG). SARS-CoV-2-naive individuals showed lower antibody responses than previously infected individuals at all timepoints tested up to 16 weeks after the prime dose, but achieved similar antibody responses to previously infected participants by 4 weeks after the second dose. Individuals primed with the BNT162b2 vaccine showed a larger decrease in mean anti-RBD and anti-spike IgG concentrations with a 16-week interval between doses (from 8·12 log BAU/mL to 4·25 log BAU/mL for anti-RBD IgG responses and from 8·18 log BAU/mL to 6·66 log BAU/mL for anti-spike IgG responses) than did those who received the mRNA-1273 vaccine (two doses of mRNA-1273: from 8·06 log BAU/mL to 7·49 log BAU/mL for anti-RBD IgG responses and from 6·82 log BAU/mL to 7·56 log BAU/mL for anti-spike IgG responses; mRNA-1273 followed by BNT162b2: from 8·83 log BAU/mL to 7·95 log BAU/mL for anti-RBD IgG responses and from 8·50 log BAU/mL to 7·97 log BAU/mL for anti-spike IgG responses). No differences in antibody responses 4 weeks after the second dose were noted between the two vaccines, in either homologous or heterologous combinations. INTERPRETATION: Interim results of this ongoing longitudinal study show that among frail, older people, previous SARS-CoV-2 infection and the type of mRNA vaccine influenced antibody responses when used with a 16-week interval between doses. In these cohorts of frail, older individuals with a similar age and comorbidity distribution, we found that serological responses were similar and clinically equivalent between the discovery and confirmatory cohorts. Homologous and heterologous use of mRNA vaccines was not associated with significant differences in antibody responses 4 weeks following the second dose, supporting their interchangeability. FUNDING: Public Health Agency of Canada, Vaccine Surveillance Reference Group; and the COVID-19 Immunity Task Force. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Anciano , Vacuna BNT162 , Anciano Frágil , Humanos , Inmunoglobulina G , Estudios Longitudinales , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
5.
Clin Transl Immunology ; 11(3): e1380, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1750347

RESUMEN

Objectives: Antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in detecting previous exposures and analyzing vaccine-elicited immune responses. Here, we describe a scalable solution to detect and quantify SARS-CoV-2 antibodies, discriminate between natural infection- and vaccination-induced responses, and assess antibody-mediated inhibition of the spike-angiotensin converting enzyme 2 (ACE2) interaction. Methods: We developed methods and reagents to detect SARS-CoV-2 antibodies by enzyme-linked immunosorbent assay (ELISA). The main assays focus on the parallel detection of immunoglobulin (Ig)Gs against the spike trimer, its receptor binding domain (RBD) and nucleocapsid (N). We automated a surrogate neutralisation (sn)ELISA that measures inhibition of ACE2-spike or -RBD interactions by antibodies. The assays were calibrated to a World Health Organization reference standard. Results: Our single-point IgG-based ELISAs accurately distinguished non-infected and infected individuals. For seroprevalence assessment (in a non-vaccinated cohort), classifying a sample as positive if antibodies were detected for ≥ 2 of the 3 antigens provided the highest specificity. In vaccinated cohorts, increases in anti-spike and -RBD (but not -N) antibodies are observed. We present detailed protocols for serum/plasma or dried blood spots analysis performed manually and on automated platforms. The snELISA can be performed automatically at single points, increasing its scalability. Conclusions: Measuring antibodies to three viral antigens and identify neutralising antibodies capable of disrupting spike-ACE2 interactions in high-throughput enables large-scale analyses of humoral immune responses to SARS-CoV-2 infection and vaccination. The reagents are available to enable scaling up of standardised serological assays, permitting inter-laboratory data comparison and aggregation.

6.
mBio ; 12(3): e0078821, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1286718

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that is continuously evolving. Although its RNA-dependent RNA polymerase exhibits some exonuclease proofreading activity, viral sequence diversity can be produced by replication errors and host factors. A diversity of genetic variants can be observed in the intrahost viral population structure of infected individuals. Most mutations will follow a neutral molecular evolution and will not make significant contributions to variations within and between infected hosts. Herein, we profiled the intrasample genetic diversity of SARS-CoV-2 variants, also known as quasispecies, using high-throughput sequencing data sets from 15,289 infected individuals and infected cell lines. Despite high mutational background, we identified recurrent intragenetic variable positions in the samples analyzed, including several positions at the end of the gene encoding the viral spike (S) protein. Strikingly, we observed a high frequency of C→A missense mutations resulting in the S protein lacking the last 20 amino acids (SΔ20). We found that this truncated S protein undergoes increased processing and increased syncytium formation, presumably due to escaping M protein retention in intracellular compartments. Our findings suggest the emergence of a high-frequency viral sublineage that is not horizontally transmitted but potentially involved in intrahost disease cytopathic effects. IMPORTANCE The mutation rate and evolution of RNA viruses correlate with viral adaptation. While most mutations do not make significant contributions to viral molecular evolution, some are naturally selected and produce variants through positive selection. Many SARS-CoV-2 variants have been recently described and show phenotypic selection toward more infectious viruses. Our study describes another type of variant that does not contribute to interhost heterogeneity but rather phenotypic selection toward variants that might have increased cytopathic effects. We identified that a C-terminal truncation of the spike protein removes an important endoplasmic reticulum (ER) retention signal, which consequently results in a spike variant that easily travels through the Golgi complex toward the plasma membrane in a preactivated conformation, leading to increased syncytium formation.


Asunto(s)
COVID-19/patología , Genoma Viral/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Línea Celular , Evolución Molecular , Variación Genética/genética , Células Gigantes/virología , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Tasa de Mutación , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA